NASA EARTH SCIENCE ENTERPRISE TECHNOLOGY PLANNING WORKSHOP # **Workshop Overview** January 23-24, 2001 Hyatt Arlington Hotel Arlington, VA ## **Background** - NMP and ESTO have initiated planning for spacecraft and instrument technologies to enable Earth Science Enterprise (ESE) missions with a time horizon of 5 to 15 years - Derived from existing ESE science planning documents (ESE Strategic Plan, Earth Science Implementation Plan, Easton Report) - ESTO has identified critical technologies of overall importance to ESE - Large deployable structures - Radiometers - Radar - Laser/LIDAR - On-board computing - NMP has identified key component technologies that could potentially require a validation in space to reduce their cost and risk to the first science user - Large, Light-Weight Deployable Antennas - Light-Weight Deployable UV/Visible/IR Telescopes - Ultra-High Data Rate Communications - Intelligent Distributed Spacecraft Infrastructure - High Performance Spectrometry - These candidate technologies were presented to the ESE Associate Administrator for his review and concurrence ### **Motivations** - Engage Code Y Science community more directly - To get buy-in to planning process - To 'own' products of planning - Disseminate information much more widely - Larger NASA community - Non-NASA - OGA - Academia - Industry ESE Tech WS 1. # **Participation** Total Count :400+ ## **Breakout Session Chairs and Facilitators** | TOPIC | Co-chair | Co-chair | Facilitator | |--|-------------------------|----------------------|--------------------| | Lightweight Deployable
Antennas | R. Kakar, NASA HQ | D. Schaubert, U Mass | M. Lou JPL | | High Rate Comms | Glenn Prescott, NASA HQ | K.Bhasin, GRC | F. Lansing, JPL | | Deployable Telescopes | E. Browell, LaRC | F. Peri, GSFC | R. Connerton, GSF0 | | Distributed S/C
Infrastructure | M. Schoeberl, GSFC | J. Bristow, GSFC | C. Raymond, JPL | | Precision Navigation | J. LaBrecque, NASA HQ | P. Axelrad, U Colo. | J. Hartley, GSFC | | Onboard Data Processing | E. Paylor, NASA HQ | G. Bothwell | A. Walton, JPL | | Integrated Optics and
Spectral Dispersion
Technologies | D. Wickland, NASA HQ | J. Gleason, GSFC | D. Crisp, JPL | | Laser Technology | U. Singh, LaRC | J. Spinhirne, GSFC | R. Menzies, JPL | | Innovative technologies | L. Schuster, NASA HQ | B. Wilson, JPL | M. Buehler, JPL | # **Breakout Session Objectives** - Clarify the relevance of each class of technologies for future ESE science mission objectives - new science investigations enabled by technologies - new measurement type, new vantage points (MEO, GEO, L1, L2) - requirements for spatial, temporal, or spectral resolution or sampling - needed by multiple themes? - anticipated time scale for science mission - Identify technology subsystems that address these needs - current state of the art - capabilities enabled by new technology - current Technology Readiness Level (TRL) - ongoing technology development / investments (NASA, OGA, ...) - Identify requirements for flight validation - justification - objectives, scope, and milestones - top-level validation flight development schedule ### **Breakout Session Products** ### Science Capability Need - Relevance to Future ESE Science Missions - Science / Measurement Requirements - Application to Multiple Missions #### Candidate Technology State of the Art - Description/Illustration of Technology - Major Technology Elements and TRL - Technology Development Roadmap - Technology State of the Art - Ongoing Investments / Investment Strategy #### Implementation - Ground development / Validation (TRL 1 4) - Flight Validation - Description/Justification/Benefits - Accommodation Requirements / Schedule # **Sample Output-- On-board Processing** | TECHNOLOGY DESCRIPTION | | VALIDATION EXPERIMENT | | | Notes from workshop | | | |--|---|--|---|--|---|--|--| | Future Mission Type (ESE Mission applicability) | Challenge
Description | Technology
Approach | DRIVER(S) FOR
FLIGHT
VALIDATION | OBJECTIVE | SCOPE | MILESTONES | | | | | Software/hardware
augmentation for
SEE/SEU
susceptibility | Cannot reproduce space environment on ground | Demonstrate
system reliability,
quantify
improvements | Piggyback on
long-term
mission. Multiple
processors. | hardware (Year 1) 2. Develop fault tolerant operating | RADIATION TOLERANT
PROCESSORS.
Candidate for piggyback
on operational mission
in high-rad conditions.
'08 candidate | | | | Radiation-tolerant
libraries | none | | | | RADIATION TOLERANT
DEVICES. NASA support
needed for ongoing
library upgrades to keep
up with industry
developments. | | Global
Precipitation
Mission, any multi-
platform mission | Communications
Node/ Rad tolerant
network interface | Develop common
network node to fly
on multiple
spacecraft | Can't reproduce on
the ground
because of
distances and
geometry | Demonstrate a
working
spaceborne
network (packet
switching core) | Piggyback
multiiple
spacecraft/missi
ons | Develop HW architecture for | COMMUNICATION
NODE/RAD-HARD
NETWORKS. System
development
demonstrate system
maturity | | | architecture | Develop a
packetized, high
speed rad- hard
data bus | Develop high-
speed
communication
components | Demonstrate a standard component interface | Any host mission - (piggyback) | | Saves cost, enables
future adaptation, open
system standard
simplifies and facilitates
future missions | ESE Tech WS 1/ # **Sample Output-- On-board Processing** | TECHNOLOGY DESCRIPTION | | VALIDATION EXPERIMENT | | | Notes from workshop | | | |---|---|---|---|---|--|--|---| | Future Mission Type (ESE Mission applicability) | Challenge
Description | Technology
Approach | DRIVER(S) FOR
FLIGHT
VALIDATION | OBJECTIVE | SCOPE | MILESTONES | | | Sensor Webs,
EOS-1 Hazard
detection
(earthquake,
buoys) | (Planning) Autonomous spacecraft contro; SW for autonomous mission operations | Onbd planning
scheduling,
synchronization,
hazard checking,
resource mgmet,
event handling | Long term system
level complexity,
faults,
asynchronous
processing, latency | Multisensor
fusion/web; hooked
to an incremental
planner | Value-added
multiple sensor
mission (could
be dedicated or
piggyback) | 1. Develop SW reqts (Year1) 2. Dev software (e.g., target processing algorithm) 3. Run planner on ground 4. Run piggyback mission 5. Run multi-SC mission ['05 timeline] | SW Autonomy session | | | (Interesting targets)
Feature Extraction | Target handoff,
region
classificaton,
templated
matching, model-
based | Target handoff to other spacecraft and instruments. (Instrument specific). Ability to use identified features in planner in previous line). | | | | | | Hyperspectral
instruments,
large data
intensive
systems (SARs)
[SW-inst] | Data reduction,
more effective
bandwidth
utilization, fault
tolerant and robust | Develop common packages for data | Validate fault models, reliability, accuracy. Scientific acceptance: demonstrate robustness | Demonstrate advanced fault- tolerate software. Dramatic reduction in downlink bandwidth or increased use of existing link. Quantify and enable new science - 10x or more. | Value-added to
appropriate
missions -
hyperspectral,
Firesat. Could
be piggyback. | Science collaboration. Could fly soon - new hardware development not necessary. | Timely. Tightly coupled with instrument developers. | ESE Tech WS 1/t